Nissei Foundation grant to Dr Wyatt et al.

The Nissei Foundation has awarded Dr Wyatt and colleagues a Grant for Environmental Issues Research by Young Researchers, 環境問題研究助成 (若手研究):

Title: Elucidating jungle-to-reef connections using state-of-the-art chemical tracers: Towards harmony between human activities and the pristine environments of Iriomote-jima, Japan | 最先端化学トレーサーによる亜熱帯林とサンゴ礁生態系のつながりの 解明:西表島の貴重な自然の保全と人間活動の調和に向けて

Participants: Alex. S.J. Wyatt, Toshi Nagata, Yusuke Yokoyama, Toshihiro Miyajima, James Leichter (Scripps)

This grant will facilitate ongoing work examining ecological links between oceanic and terrestrial processes in the pristine coral reef ecosystems of the west coast of Iriomote-jima.  Preliminary isotope tracer work has demonstrated that corals may be strongly dependent  on ancient carbon exported from the forested catchment feeding into Funauki Bay, which suggests that reef habitats across the bay may depend on the preservation of the intact upstream sub-tropical forest.

More info:

Thank you to the Nissei Foundation for their support.


Sumitomo Foundation grant to Dr Wyatt et al.

The Sumitomo Foundation has awarded an Environmenal Research Grant (環境研究助成) to Dr Wyatt and colleagues for their pioneering work on the environmental drivers of the structure and function of ‘twilight reefs’ (deep-water mesophotic coral ecosystems).

Title: A refuge for coral reef biodiversity: trophic function and reproduction in the twilight zone | 危機に瀕したサンゴ礁生物の避難場所:薄明帯の学際的解明による保全・再生の支援

Participants: Alex S.J. Wyatt, Toshihiro Miyajima, Toshi Nagata, James Leichter (Scripps), Satoshi Mitarai (OIST), Kazuhiko Sakai (U Ryukyu), Rob Toonen (U Hawaii).

More info:

Thank you to the Sumitomo Foundation for their support.


Impacts of internal waves on the twilight zone @ ICRS 2016, Hawaii (Dr Wyatt)

Ecological and biogeochemical impacts of internal waves on mesophotic coral ecosystems: testing eddy correlation and isotope approaches, Iriomote, Japan

Alex S.J. Wyatt1*, Toshihiro Miyajima1, James J. Leichter2, Tohru Naruse3, Tomohiro Kuwae4, Shoji Yamamoto5, Naomi Satoh1, Toshi Nagata1

1Department of Chemical Oceanography, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, JAPAN
2Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA
3Tropical Biosphere Research Center, University of the Ryukyus, Taketomi, Japan
4Coastal and Estuarine Environment Research Group, Port and Airport Research Institute (PARI), Nagase, Yokosuka, JAPAN
5Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

While mesophotic coral ecosystems (MCE) may be protected or damped from disturbances impacting shallower reefs insufficient information is available on the environmental conditions supporting these ‘deep water refugia’. Nutrient inputs and recycling have rarely been quantified over MCE but may differ fundamentally to that of shallow counterparts due to the reduction in light and increasing reliance on oceanic nutrients, leading to increased heterotrophy over autotrophy at species and ecosystem levels and stronger links to oceanic processes. For instance, due to the depth of MCE relative to typical water column density stratification, internal waves may be a highly significant process depending on community aspect and exposure. Preliminary observations of MCE along a continuum of oceanic exposure in Funauki Bay, Iriomote, Japan indicate that ocean-exposed MCE are subject to semi-diurnal temperature oscillations of up to 4 C during summer (range 23 – 29 deg C), while inner MCE occur shallower in more turbid but stable environments. Oceanic exposure along the bay may determine both the distribution and function of spatially extensive, but relatively homogenous, communities dominated by Leptoseris sp. or Acropora ?horrida. Combining bulk and compound-specific stable isotope analyses, depth-specific radioisotope markers such as radiocarbon, and eddy correlation experiments in these habitat promises a useful approach for elucidating the functional importance of internal waves in the development and persistence of MCE at local to regional scales.

Dongsha Atoll Research Award (2016-2017) to Dr Wyatt and Prof Wang

Dr Wyatt has been awarded the Dongsha Atoll Research Award (2016-2017) by the Dongsha Atoll Research Station (DARS), managed by Taiwan’s National Sun Yat-sen University (NSYU).  The award will facilitate the implementation of a collaborative project with Professor Yu-Huai Wang (NSYU) examining the impact of internal waves on the biochemistry and ecology of Dongsha’s reef communities, focusing on ‘twilight zone’ mesophotic coral ecosystems around the atoll.

Dr Wyatt is excited to begin examining the reefs around Dongsha Atoll, which experiences some of the most energetic internal wave activity on the planet, and collaborating with Professor Wang’s group and NSYU.  The support of the Dongsha Atoll Research Station is greatly appreciated.

Ecosystem inputs and recycling over coral reefs @ 3rd APCRS, 2014 (Dr Wyatt)

Functional understanding of ecosystem-scale inputs and recycling over coral reef communities from stable isotope analyses of organic matter

Alex S.J. Wyatt1*, James J. Leichter2, Benoit Thibodeau1, Toshihiro Miyajima1, Craig A. Carlson3, Craig E. Nelson4, Toshi Nagata1

1Marine Biogeochemistry Laboratory, Department of Chemical Oceanography, Atmosphere & Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, JAPAN
2Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA
3University of California at Santa Barbara, Santa Barbara, California, USA
4Center for Microbial Oceanography: Research and Education, University of Hawai’i, USA

Stable isotope analyses (SIA) are an increasingly useful tool for understanding functional links between water flow and nutrient cycling over coral reefs, including relative fluxes of oceanic and reef-derived material. SIA have suggested that oceanic particulate organic matter (POM) flowing over reefs can be rapidly metabolized, with the subsequent release of remineralized inorganic nutrients, as well reef-derived POM, representing a significant resource for downstream communities. High oceanic concentrations of dissolved organic matter (DOM) relative to POM suggests DOM may be an even more significant resource, especially around low-POM reefs such as mid-ocean islands and atolls. However, DOM fluxes have rarely been quantified, perhaps due to the refractory nature of oceanic DOM and difficulties linking small concentration changes with spatial changes in both hydrodynamics and macro- and microbial communities. Our Lagrangian studies of DOM around Moorea, French Polynesia and Ishigaki Island, Japan suggest that DOM changes occurring over short spatial scales reflect a balance between uptake and release. SIA further suggest that the release of reef-derived DOM (i.e. enriched in 13C), perhaps relatively labile and from nitrogen fixing organisms (i.e. depleted in 15N), may promote nutrient recycling and supply to downstream communities. Linking SIA and local hydrodynamics offers a promising path towards elucidating the relative functional importance of oceanic and reef-level processes for reef communities.

Key words: dissolved organic matter, fluxes, particulate organic matter, recycling, stable isotope analyses

Bio-physical interactions on a coral reef island (Leichter et al., Oceanography)

Biological and Physical Interactions on a Tropical Island Coral Reef: Transport and Retention Processes on Moorea, French Polynesia

Leichter, J.J., Alldredge, A.L., Bernadi, G., Brooks, A.J., Carlson, C.A., Carpenter, R.C., Edmunds, P.J., Fewings, M.R., Hanson, K.M., Holbrook, S.J., Hench, J.L., Nelson, C.E., Schmitt, R.J., Toonen, R.J., Washburn, L. and Wyatt, A.S.J.

The Moorea Coral Reef Long Term Ecological Research project funded by the US National Science Foundation includes multidisciplinary studies of physical processes driving ecological dynamics across the fringing reef, back reef, and fore reef habitats of Moorea, French Polynesia. A network of oceanographic moorings and a variety of other approaches have been used to investigate the biological and biogeochemical aspects of water transport and retention processes in this system. There is evidence to support the hypothesis that a low-frequency counterclockwise flow around the island is superimposed on the relatively strong alongshore currents on each side of the island. Despite the rapid flow and flushing of the back reef, waters over the reef display chemical and biological characteristics distinct from those offshore. The patterns include higher nutrient and lower dissolved organic carbon concentrations, distinct microbial community compositions among habitats, and reef assemblages of zooplankton that exhibit migration behavior, suggesting multigenerational residence on the reef. Zooplankton consumption by planktivorous fish on the reef reflects both retention of reef-associated taxa and capture by the reef community of resources originating offshore. Coral recruitment and population genetics of reef fishes point to retention of larvae within the system and high recruitment levels from local adult populations. The combined results suggest that a broad suite of physical and biological processes contribute to high retention of externally derived and locally produced organic materials within this island coral reef system.

DON isotopes over a coral reef (Thibodeau et al., Coral Reefs)

Heterogeneous dissolved organic nitrogen supply over a coral reef: first evidence from nitrogen stable isotope ratios

B. Thibodeau, T. Miyajima, I. Tayasu, A. S. J. Wyatt, A. Watanabe, N. Morimoto, C. Yoshimizu, T. Nagata

Dissolved organic nitrogen (DON) potentially plays a major role in sustaining the high productivity and biological diversity of coral reefs. However, data are scarce regarding sources and sinks of DON. This study, for the first time, determined the 15N isotopic composition of total dissolved nitrogen (δ15NTDN), reflecting the isotopic signature of DON, in the water column over a coral reef. The uniformity in δ15NTDN during high tide (3.2 ± 0.3 ‰) indicated that the DON was mainly derived from offshore waters. In contrast, higher spatial heterogeneity of δ15NTDN (3.1 ± 0.9 ‰) and DON concentrations during low tide indicated the existence of local DON sources patchily distributed over the reef. Low δ15NTDN values located mid-reef were indicative of DON release from organisms that obtained their N via N2 fixation, whereas high δ15NTDN appeared to reflect localized release of DON by organisms exposed to dissolved inorganic nitrogen with elevated 15N, such as from terrestrial and offshore inputs. Collectively, the results highlight the importance of spatial patterns in DON release from reef communities in the N cycling of coral reefs.

Coral reef POM dynamics (Wyatt et al., L&O)

Particulate nutrient fluxes over a fringing coral reef: Source-sink dynamics inferred from carbon to nitrogen ratios and stable isotopes

Alex S. J. Wyatt, Ryan J. Lowe, Stuart Humphries and Anya M. Waite

We examined spatial and temporal variations in particulate organic matter (POM) dynamics over a fringing coral reef (Ningaloo Reef) in Western Australia during the austral autumn and spring. Total POM concentrations generally did not differ between seasons or reef zones, but the composition of POM, in terms of carbon isotope ratios (δ13C-POM), carbon to nitrogen ratios (C : N), and fatty acids, changed consistently in water flowing across the reef. Both δ13C-POM and C : N increased from the fore reef to the reef flat and lagoon, −23.0‰ to −20.1‰ and 7.31 to 8.34, respectively. Average rates of net POM uptake by the reef community were highest over the reef crest (4 to 30 mmol N m−2 d−1 and 6 to 130 mmol C m−2 d−1), with a Bayesian isotope model confirming independent measurements of high uptake rates of allochthonous POM (oceanic phyto- and zooplankton). In contrast, over the reef flat, net release of POM was observed (−4 to −5 mmol N m−2 d−1 and −50 mmol C m−2 d−1), with gross release rates (estimated as −6 to −8 mmol N m−2 d−1 and −30 to −90 mmol C m−2 d−1) indicating that the release of autochthonous POM may be of similar magnitude to allochthonous uptake. Examining POM dynamics in terms of gross fluxes reinforces the dependence of coral reef systems on oceanographic processes for allochthonous POM supply, as well as highlighting the potential for autochthonous POM production to supply nutrients to benthic and pelagic communities downstream.

Coral reef nutrient dynamics (Wyatt et al., L&O)

Oceanographic forcing of nutrient uptake and release over a fringing coral reef

Alex S. J. Wyatt, James L. Falter, Ryan J. Lowe, Stuart Humphries and Anya M. Waite

Nitrate and nitrite (NOx) and phosphate (PO4) dynamics over Ningaloo Reef, Western Australia, are shown to depend on oceanographic forcing of coupled mass transfer limited (MTL) gross uptake and gross release from remineralized oceanic particulate organic matter (POM). Estimates of gross release rates increased significantly with increasing POM uptake and were of the same order as gross uptake rates. Gross uptake rates increased significantly with increasing oceanic concentrations and wave energy dissipation, were 35–80% higher over the reef crest (7–9 mmol NOx m−2 d−1 and 4–5 mmol PO4 m−2 d−1), and were significantly correlated with independent estimates of POM-mediated gross NOx uptake, supporting both MTL uptake and the strong role of oceanic POM supply. The relative supply of NOx and POM was linked to the seasonal dynamics of a regional current system. In late spring, upwelling associated with seasonally strong equator-ward winds led to increased NOx concentrations (0.71 ± 0.2 µmol L−1), POM < NOx and the reef was a net nutrient sink (5390 mmol NOxm−1 d−1 and 270 mmol PO4 m−1 d−1). In contrast, during the autumn, NOx was low (0.16 ± 0.06 µmol L−1), but POM > NOx and the reef was a net nutrient source (−7060 mmol NOx m−1 d−1 and −730 mmol PO4 m−1 d−1). The autumn enhancement of oceanic POM supply to the reef can be attributed to a regional phytoplankton bloom associated with acceleration of the oligotrophic Leeuwin Current, which may result in a significant supply of dissolved nutrients to downstream communities.

Picoplankton and virus uptake by a coral reef (Patten et al., Coral Reefs)

Uptake of picophytoplankton, bacterioplankton and virioplankton by a fringing coral reef community (Ningaloo Reef, Australia)

Nicole L. Patten, Alex S.J. Wyatt, Ryan J. Lowe, Anya M. Waite

We examined the importance of picoplankton and virioplankton to reef trophodynamics at Ningaloo Reef, (north-western Australia), in May and November 2008. Picophytoplankton (Prochlorococcus,Synechococcus and picoeukaryotes), bacterioplankton (inclusive of bacteria and Archaea), virioplankton and chlorophyll a (Chl a) were measured at five stations following the consistent wave-driven unidirectional mean flow path of seawater across the reef and into the lagoon.Prochlorococcus, Synechococcus, picoeukaryotes and bacterioplankton were depleted to similar levels (~40% on average) over the fore reef, reef crest and reef flat (=‘active reef’), with negligible uptake occurring over the sandy bottom lagoon. Depletion of virioplankton also occurred but to more variable levels. Highest uptake rates, m, of picoplankton occurred over the reef crest, while uptake coefficients, S (independent of cell concentration), were similarly scaled over the reef zones, indicating no preferential uptake of any one group. Collectively, picophytoplankton, bacterioplankton and virioplankton accounted for the uptake of 29 mmol C m−2 day−1, with Synechococcuscontributing the highest proportion of the removed C. Picoplankton and virioplankton accounted for 1–5 mmol N m−2 day−1 of the removed N, with bacterioplankton estimated to be a highly rich source of N. Results indicate the importance of ocean–reef interactions and the dependence of certain reef organisms on picoplanktonic supply for reef-level biogeochemistry processes.

Keywords: Coral reef, Picoplankton, Virus, Uptake, Ningaloo Reef, Indian Ocean